
1/31/2002 1

Applying ADLs to Assess Applying ADLs to Assess
Emerging Industry Specifications for Emerging Industry Specifications for

Dynamic Discovery of Ad Hoc Network Services Dynamic Discovery of Ad Hoc Network Services

Christopher Dabrowski and Kevin Mills

DARPA PI Meeting
January 31, 2001

A Project in the ITL Pervasive Computing Portfolio

1/31/2002 2

Project Goals

1) Use ADLs and associated tools to analyze Discovery Protocol
specifications to assess consistency and completeness wrt
dynamic change conditions—provide basis for gauges.

2) Compare and contrast emerging commercial service discovery
technologies with regard to function, structure, behavior,
performance and scalability in the face of dynamic change.

Universal

Plug and Play

1/31/2002 3

Presentation Topics

Planned Approach to Modeling and Analysis and Current Status

Technical Discussion of Initial Progress

Generic and Specific UML Models Encompassing Jini, UPnP,
& SLP

Rapide Model for Jini (90% complete)

Upcoming Milestones and Planned Publications

1/31/2002 4

Modeling Function, Structure, and Behavior

Products
• Rapide specifications of Jini, Universal Plug and Play

(UPnP), and Service Location Protocol (SLP)
• Scenarios and topologies for evaluating discovery protocols
• Suggested invariant properties for service discovery protocols
• Suggested metrics, based on partially ordered sets

(POSETs), for comparing and contrasting discovery protocols
• Paper identifying inconsistencies and ambiguities in Jini and

UPnP and describing how they were found
• Paper proposing invariants for service discovery protocols,

and evaluating how Jini, UPnP, and SLP fare
• Paper comparing and contrasting Jini, UPnP, and SLP at

the level of POSET metrics

Objectives
(1) Provide increased understanding of the competing

dynamic discovery services emerging in industry
(2) Develop metrics/gauges for comparative analysis of

different approaches to dynamic discovery and for analyzing
consistency and completeness of discovery protocols

(3) Assess suitability of architecture description languages to
model and analyze emerging dynamic discovery protocols

Technical Approach
Develop ADL models from selected specifications for service
discovery protocols and develop a suite of scenarios and
topologies with which to exercise the ADL models
Propose a set of invariant properties that all dynamic
discovery protocols should satisfy
Propose a set of metrics, based on partially ordered sets,
with which to compare and contrast discovery protocols
Analyze the ADL models for inconsistencies, to assess

invariant satisfaction, and to compare and contrast protocols

Status as of January 31, 2001

• Developed a generic UML model encompassing the
structure and function of Jini, UPnP, SLP, Bluetooth,
and HAVi

• Projected specific UML models for Jini, UPnP, and SLP
• Developed a Rapide Model of Jini structure, function,

and behavior (90% complete)
• Drafted a scenario language to drive the Rapide Jini

Model; currently being implemented.
• Developed some initial invariants and constraints for

Jini behavioral model
• Discovered a number of ambiguities and

inconsistencies in Jini Specification V1.1
• Discovered a major architectural issue in the interaction

between Jini directed discovery and multicast discovery

1/31/2002 5

Benefits from Using Architecture, ADLs, & Tools

• Represent essential complexity with effective
abstractions

• Provide a framework and context
– to more easily pinpoint where inconsistencies and

ambiguities may exist within software implementing
specifications & to understand how they arise

– to compare and contrast different discovery protocols
(Jini, UP&P, SLP)

– to define gauges that yield qualitative and quantitative
measures

1/31/2002 6

Generic UML Structural Model of
Service Discovery Protocols

Notif ication Request

(from Data View)

<<repository entry >>

Parameter Notif ication Request

(from Data View)

<<repository entry >>
Serv ice Cache
<<repository >>

Notif ication Cache
<<repository >>

0..*0..*

Aggregates

Serv ice Cache
<<repository >>

Serv ice Repository
<<repository >>

Serv ice Parameter Change Notif ication
<<repository >>

0..*0..*
LOCAL CACHE MANAGER
Start Aging Task()

11

SERVICE PROVIDER

SERVICE DESCRIPTION

Identif y
Ty pe
API
GUI
Attributes

(from Data View)

<<repository entry >>

0..*0..*

Aggregates

11 owns

SERVICE CACHE MANAGER
discov er Network Context()
<<not shr>> activ ate Manager Discov ery ()
activ ate Announce Processing()
start Matching Task()
start Aging Task()
Serv ice Cache Manager()

0..10..1

Contains

11

Contains

SERVICE MANAGER
discov er Network Context()
<<not shr>> Cache Manager Discov ery ()
<<OPT>> Announce Serv ice Processing()
<<not shr>> start Renewal Task()
Serv ice Manager()
<<not shr>> start Serv ice Parameter Matching Task()

11

Contains

0..10..1

0..*0..*

manages

0..*0..*

+inf o cache

0..*

+serv ice inf o
source

0..*

service information collection

SERVICE USER
discov er Network Context()
Serv ice Discov ery ()
<<not shr>> start Renewal Task()
Serv ice User()

0..10..1

0..*

0..*

0..*

0..*

invokes operations

0..*0..*

queries information from

0..*

0..*

0..*

0..*

service availabilty
requests

0..*

0..*

0..*

0..*

service
availability
requests

1/31/2002 7

Architecture Description Languages and Tools

Allow us to model the essential complexity of discovery protocols,
while ignoring the incidental complexity

Incidental complexity represented by the code: for example consider
Core Jini – an 832 page commentary on the massive amount of Java
code that comprises Jini, which also depends on complex underlying
code for Remote Method Invocation, Distributed Events, Object
Serialization, TCP/IP, UDP, HTTP, and Multicast Protocol
Implementation.

Jini documented in a 385 page specification; however, the document
is static and thus captures only the normative complexity because
most of the essential complexity arises through interactions among
distributed, independently acting, Jini components.

1/31/2002 8

Rapide, an Architecture Description Language and Tools
Developed for DARPA by Stanford

-- **
-- ** 3.3 DIRECTED DISCOVERY CLIENT INTERFACE **
-- **
-- This is used by all JINI entities in directed
-- discovery mode. It is part of the SCM_Discovery
-- Module. Sends Unicast messages to SCMs on list of
-- SCMS to be discovered until all SCMS are found.
-- Receives updates from SCM DB of discovered SCMs and
-- removes SCMs accordingly
-- NOTE: Failure and recovery behavior are not
-- yet defined and need reviw.
TYPE Directed_Discovery_Client
 (SourceID : IP_Address; InSCMsToDiscover : SCMList; StartOption : DD_Code;
 InRequestInterval : TimeUnit; InMaxNumTries : integer; InPV : ProtocolVersion)
IS INTERFACE
SERVICE DDC_SEND_DIR : DIRECTED_2_STEP_PROTOCOL;
SERVICE DISC_MODES : dual SCM_DISCOVERY_MODES;
SERVICE DD_SCM_Update : DD_SCM_Update;
SERVICE SCM_Update : SCM_Update;
SERVICE DB_Update : dual DB_Update;
SERVICE NODE_FAILURES : NODE_FAILURES; -- events for failure and recovery.
ACTION
 IN Send_Requests(),
 BeginDirectedDiscovery();
BEHAVIOR
 action animation_Iam (name: string);
 MySourceID : VAR IP_Address;
 PV : VAR ProtocolVersion;

Specification of Rapide Architecture

Execute with Raptor Engine

Analyze Generated POSETs

MODELING
ESSENTIAL
COMPLEXITY

Assess Invariant
Satisfaction &
Constraint
Violations

1/31/2002 9

Layered View of Prototype JINI Architecture in Rapide
Derived from SEI Architectural Layers Approach

JINI
Entities

Service
Manager

Entity
Major
Functions

Lazy Discovery

Directed
Discovery
Client (s,ra)

Aggressive Discovery
Directed
Discovery

Functional
Subcomponents

Network
Node Communication

Links

Network
Topological
Entities

Legend
Type of

Part of

SCM
Multicaster

SM
Multicaster

Unicaster

Service
Cache

Manager

Service
User

Service
Repository

SCM
Discovery

SCM
Beacon &
Response

SCM
Matching

Cache

Notification
Repository

Multicast
Request
Server

Callback (ra)

Executive

SCM
Database Announcer

(s)

Executive

Multicast
Request
Client (s)

SCM
API

Server (sa)

Announcement
Responder (l,ra)

Multicast
Request

Server (l,sa)

JINI
Entities

Service
Manager

Entity
Major
Functions

Lazy Discovery

Directed
Discovery
Client (s,ra)

Aggressive Discovery
Directed
Discovery

Functional
Subcomponents

Network
Node Communication

Links

Network
Topological
Entities

Legend
Type of

Part of

Legend
Type ofType of

Part ofPart of

SCM
Multicaster

SM
Multicaster

Unicaster

Service
Cache

Manager

Service
User

Service
Repository

SCM
Discovery

SCM
Beacon &
Response

SCM
Matching

Cache

Notification
Repository

Multicast
Request
Server

Callback (ra)

Executive

SCM
Database Announcer

(s)

Executive

Multicast
Request
Client (s)

SCM
API

Server (sa)

Announcement
Responder (l,ra)

Multicast
Request

Server (l,sa)

1/31/2002 10

Execute Architecture with the Raptor Engine

1/31/2002 11

Drive Model Topology with Scenarios

> StartTime {NodeFail || NodeRecover} NodeID DelayTime.
> StartTime {LinkFail || LinkRestore} NodeID DelayTime FromNode

ToNode.
> StartTime {MProbeFail || MProbeRestore} NodeID DelayTime

FromNode ToNode.
> StartTime {GroupJoin || GroupLeave} NodeID DelayTime.
> StartTime {AddSCM || DeleteSCM} NodeID DelayTime.
> StartTime {AddService ChangeService}NodeID DelayTime ServiceTemplate

ServiceAPI ServiceGUI LeaseTime DurationTime.
> StartTime DeleteService NodeID DelayTime ServiceID.
> StartTime FindService NodeID DelayTime SMNodeID .
> StartTime AddNotificationRequest NodeID DelayTime NotificationID

ServiceTemplate Transitions LeaseTime DurationTime SCMID.
> StartTime DeleteNotificationRequest NodeID DelayTime NotificationID

SCMID.

1/31/2002 12

Analyze Invariant Satisfaction & Constraint Violations
in Real-Time

Sample Invariants

(SM SD SCM): (SM,SD) SCM registered-services
 SCM SM discovered-SCMs

(SU NR SCM): (SU,NR) SCM registered-notifications
 SCM SU discovered-SCMs

• SM is Service Manager
• SD is Service Description
• SCM is Service Cache Manager
• SU is Service User

• NR is Notification Request
• Registered-services is a set of (SM,SD) pairs
• Registered-notifications is a set of (SU,NR) pairs
• Discovered-SCMs is a set of SCM

Invariants provide basis for defining gauges that provide
qualitative measures of properties of a system

1/31/2002 13

Analyze POSETs Off-Line to Compare and Contrast
Behaviors Given a Congruent Topology and Scenario

Metrics Based on Numbers of Messages
• Message volume?
• Message intensity?

Metrics Based on Time
• Service latency?
• Service throughput?
• Recovery latency?

Metrics Based on Change
• Derivative of the message intensity?
• Derivative of the service throughput?
• Derivative of the service latency?

Metrics Based on Complexity
• Degree of dependency among messages?
• Rate of constraint and invariant violations?
• Rate of exceptions?

POSET analyses provide basis for defining gauges that provide
quantitative measures of properties of a system

1/31/2002 14

Schedule and Milestones

• FY 2001
– Operational prototype of Jini & UPnP architectures
– Report showing initial results of analysis of Jini and compare/

contrast of Jini & UPnP; recommendations on ADLs.

• FY 2002
– Formalization of quantitative & qualitative metrics to serve as

basis for gauges; formalization of compare/contrast analysis
– Expansion of operational prototype to incorporate metrics &

resulting analysis as well as SLP (other protocols?)
– Second report on results.

1/31/2002 15

EXTRA SLIDES

1/31/2002 16

Generic UML Functional Model of
Service Discovery Protocols

NOTE: This <<Interface>>
exists only if there are no
Cache Managers. The
condition applies to SLP.

NOTE: If Cache MGRs are
supported, Service Discovery
may be "Cache MGR
Discovery". If not, it may be
"Service Listening"

SERVICE DESCRIPTION

Identify
Type
API
GUI
Attributes

(from Data View)

<<repository entry>>

of DESC to Service
set Attributes()
set API()
set GUI()
set Identity()
set Type()

<<Interface>>

11

of SCM to Service User

<<OPT>> add Service Notificiation Request()
<<OPT>> renew Service Notificiation Request()
<<OPT>> delete Service Notificiation Request()
find Service()

(from of DESC to Service User)

<<Interface>>

of DESC to Service
get Attributes()
get API()
get GUI()
get Identity()
get Type()

<<Interface>>

11 LOCAL CACHE MANAGER

Start Aging Task()
(from Structural View)

SERVICE PROVIDER

1

1

1

1

invokes operations

SERVICE CACHE
(from Structural View)

11

SERVICE USER
(from Structural View)

0..*

0..*

0..*

0..*

invokes operations
0..*

0..*

0..*

0..*

invokes
operations

0..*

0..*

0..*

0..*
invokes

 operations

0..10..1

 of SM to Service
add Service Description()
change Sevice Description()
delete Service Description()

<<Interface>>

0..*

0..1

0..*

0..1

invokes operation

 of SCM to Service MGR
add Service Description()
change Service Description()
delete Service Description()
<<OPT>> renew Service Description()

<<Interface>>

11

of SM to Service Cache MGR
<<OPT>> service Description Expired()

<<Interface>>

0..* 0..*0..* 0..*
invokes
operation

of SM to Service User
find Service()
<<OPT>> add Service Parm Change Notification()
<<OPT>> renew Service Parm Change Notification()
<<OPT>> delete Service Parm Change Notification()

<<Interface>>

0..*

0..*

0..*

0..*

invokes operations

 of SU to MGR of Services
service Matched Callback()
<<OPT>> service Notification Request Expired()
<<OPT>> service Parameter Change Matched()

<<Interface>>
0..*

0..*

0..*

0..*

invokes
operations

0..10..1

SERVICE MANAGER
(from Structural View)

0..10..1

0..*

0..*

0..*

0..*
invokes operations

0..10..1

0..10..1

0..*

0..*

0..*

0..*

Invoke Service
 Matched

1/31/2002 17

UML Structural Model of Jini

Notification Request
(from Data View)

<<repository entry>>

Notificat ion Cache
<<repository>>

0..*0..*

Aggregates

Service Cache
<<repository>>

Service Repository
<<repository>>

SERVICE PROVIDER

SERVICE DESCRIPTION

Identify
Type
API
GUI
Attributes

(from Data Vi ew)

<<repository entry>>

0..*0..*

Aggregates

11

owns

SERVICE CACHE MANAGER
discover Network Context()
activate Manager Discovery()
activate Announce Processing()
start Matching Task()
start Aging Task()
Service Cache Manager()

0..10..1

Contains

11

Contains

SERVICE MANAGER
discover Network Context()
Cache Manager Discovery()
Announce Service Processing()
start Renewal Task()
Service Manager()

11

Contains

0..*0..*

manages

0..*0..*

+info cache

0..*
+service info

source

0..*
service information collection

SERVICE USER
discover Network Context()
Service Discovery()
start Renewal Task()
Service User()

0..*

0..*

0..*

0..*

invokes operations

0..*0..*
queries information from

0..*

0..*

0..*

0..*

service availabilty
requests

0..*

0..*

0..*

0..*

service
availability
requests

1/31/2002 18

UML Functional Model of Jini

NOTE: This <<Interface>>
exists only if there are no
Cache Managers. The
condition applies to SLP.

NOTE: If Cache MGRs
are supported, Service
Discovery may be
"Cache MGR
Discovery" . If not , it

 of SCM to Service MGR
add Service Description()
change Service Description()
delete Service Description()
renew Service Description()

<<Interface>>

of SM to Service Cache MGR
service Description Expired()

<<Interface>>
SERVICE CACHE MANAGER

(from Structural View)

11

0..*
0..*

0..*
0..*invokes

operation

 of SM to Service
add Service Description()
change Sevice Description()
delete Service Description()

<<Interface>>

SERVICE MANAGER
(from Structural View)

0..10..1

0..*
0..*

0..*
0..*

invokes operations

0..10..1

of DESC to Service
set Attributes()
set API()
set GUI()
set Identity()
set Type()

<<Interface>>

 of SU to MGR of Services
service Matched Callback()
service Notification Request Expired()

<<Interface>>
0..*

0..*

0..*

0..*

invokes
operationsof SCM to Service User

add Service Notificiation Request()
renew Service Notific iat ion Request()
delete Service Notificiat ion Request()
find Service()

(from of DESC to Service User)

<<Interface>>
11

SERVICE PROVIDER

0..*

0..1

0..*

0..1

invokes operation

1

1

1

1
invokes operations

of SM to Service User
find Service()

<<Interface>>

0..10..1

SERVICE DESCRIPTION
(from Data View)

<<repository entry>>

11

SERVICE USER
(from Structural View)

0..10..1

0..*

0..*

0..*

0..*

invokes
operations

0..*

0..*

0..*

0..*

invokes operat ions

0..*

0..*

0..*

0..*

invokes operations

of DESC to Service User
get Attributes()
get API()
get GUI()
get Identity()
get Type()

<<Interface>>

11
0..*

0..*
0..*

0..*

invokes
 operations

1/31/2002 19

Plan to Assess Scalability

• Use Rapide Models as a Basis to Construct Simulation Models for Jini,
UPnP and SLP, Possibly using JavaSim (from Ohio State University)
or SSFnet (from Rutgers)

• Use Results from Measurement Portion of the Project to Parameterize
the Simulation Models of the Discovery Protocols

• Design Experiments to Assess the Effect of Large Service and Device
Populations on Network Traffic

